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Abstract. The natural line of the incoherent quasi-elastic neutron scattering law of liquid
potassium has been obtained from experimental double-differential scattering cross-sections at
the temperatures of 340, 440, and 550 K for wavevector transfers in the range of 0.27 6 Q 6
1.13 Å−1. The full width at half maximum of this line as a function ofQ2 has been analysed on
the basis of several diffusion models. It has been found that the self-diffusion process in liquid
potassium has an individual and activationless character and can be approximately described by
means of the mode-coupling theory at temperatures noticeably more than the melting point.

1. Introduction

There are numerous experiments on the inelastic neutron scattering by condensed matter
which have given extensive and detailed information about structural and dynamic properties
of different substances, among them liquid alkali metals: rubidium (Copley and Rowe
1974a, b, Pilgrimet al 1991), sodium (Rapeanuet al 1981, Gl̈aser and Morkel 1984,
Söderstr̈om and Dahlborg 1984, Morkel and Gläser 1986, Morkelet al 1987), and caesium
(Bodensteineret al 1990, 1992). In the absence of data for liquid potassium, we have
performed an inelastic neutron scattering experiment for potassium melt at the temperatures
of 340, 440, and 550 K (the melting temperature of potassium is 336.7 K). The analysis
of the incoherent inelastic part of the double-differential scattering cross-section (DDSCS)
of slow neutrons, the frequency spectrum of the velocity autocorrelation function, and
the temperature dependence of a number of microscopic dynamic characteristics of liquid
potassium were presented in our earlier work (Zaezjevet al 1994a).

The objectives of the present work are the analysis of the incoherent quasi-elastic
component of the DDSCS and obtaining from these data information on the self-diffusion
process in liquid potassium.

2. Experiment

The experiment was carried out at the DIN-2PI double time-of-flight neutron spectrometer
of direct geometry (Taran 1992) set up at the IBR-2 pulsed reactor of the Joint Institute
for Nuclear Research in Dubna. A more detailed description of the spectrometer, the melt
sample and experimental conditions are presented by Zaezjevet al (1994b). Briefly, the
spectrometer is placed in the horizontal plane. Neutrons from the water moderator pass by
the first vacuum flight path of 18.8 m in the length to the chopper which monochromatizes
them. Then, neutrons are scattered with the sample investigated and pass through the second
vacuum flight path of 7 m in length towards the detector system with3He counters.
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Two background choppers and a special system for simultaneous measurements of an
effect and background ensure favourable background conditions.

The scattering cross-section of potassium includes coherent and incoherent components;
the latter is much below the former:σc = 1.73 b, σi = 0.25 b (Sears 1984). Therefore, in
order to observe and analyse the incoherent scattering, we should operate in the range of
the neutron wavevector transfer,Q, located on the left of the static structure factor,S(Q),
main peak (see figure 1). For this purpose, the incident neutron energy ofE0 = 4.0 meV
(elastic peak resolution,1E0 = 0.16 meV) and eight scattering angles in the interval of
11◦ 6 2 6 48◦ have been chosen, resulting in the range of 0.27 < Q0 < 1.13 Å−1 for the
neutron elastic scattering andS(Q0) 6 0.15. The energy transfer was−1.5–100 meV at
every scattering angle.

The melt sample is constructed as a loop since it has been designed to be used for
study of the potassium–oxygen system at a variable oxygen concentration. In the present
experiment, it is filled with pure (99.9%) potassium. The part of the sample placed directly
into the neutron beam is a thin-wall (0.2 mm) cylinder made from iron of 16 cm in height
and 12 cm in diameter. The cylinder has been tightly nested in an aluminium jacket of
1 mm in thickness. Nevertheless, this container gives a noticeable contribution to the elastic
scattering (up to 30% in the most unfavourable conditions:T = 550 K, 2 = 48◦) because
of very low potassium scattering cross-section. It was estimated that about 25% of incoming
neutrons have been scattered by the sample.

Two heaters are located at the top and the bottom of the sample such that they are
outside the neutron beam. The temperature of the sample is fixed with an accuracy of
±1 K. In order to minimize the background of the heating system two cadmium screens
towards the detectors are used.

3. Data processing

The experimental spectra have been initially corrected for the background, the beam
attenuation in the sample and the container, the container scattering, and the detector
efficiency. Then, they have been converted to the DDSCS form and absolutely normalized
to the vanadium standard.

Further, the treatment of the experimental data has involved the extraction of the natural
line of the incoherent quasi-elastic scattering law (IQESL) from the DDSCSs obtained above.
To do this, the following is required.

(i) To separate the incoherent quasi-elastic part from the total DDSCS, taking into
account that the both quasi-elastic and inelastic neutron scattering in potassium includes
coherent and incoherent components. In so doing, it should be remembered that the
separation of the DDSCS into inelastic and quasi-elastic components can be done only
under the assumption that the vibrational and diffusive motions of particles in a substance
are uncorrelated (Springer 1972).

(ii) To turn the incoherent quasi-elastic component of the DDSCS measured at fixed
scattering angle into the IQESL at constant value ofQ = |k − k0| wherek andk0 are the
neutron wavevector before and after scattering respectively. Such a procedure is required
for the subsequent model analysis of results.

(iii) To take into account the spectrometer resolution and to turn the ‘apparatus’ curves
to the natural lines of the IQESL.

The separation of the incoherent quasi-elastic scattering component from the
experimental DDSCS has been performed by the factor method which goes back to Slaggie’s
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Figure 1. The DDSCS of liquid potassium2 = 26◦. The experimental points are described by
the full curve which represents the total calculated DDSCS. The dotted curve shows the quasi-
elastic scattering component. The dot–dashed, short-dashed, and long-dashed curves represent
the inelastic incoherent, coherent, and multiple-scattering components respectively. The static
structure factor of liquid potassium (van der Lugt and Alblas 1985) is shown in the inset. Arrows
indicateQ0 values corresponding to the elastic scattering for eight scattering angles: 11, 16, 21,
26, 33, 38, 43, and 48◦.
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work (1967). In the framework of this method, we suppose that the relation between the
quasi-elastic scattering component and the total DDSCS must be equal in calculation and
experiment. Hence, the quasi-elastic scattering component of the total experimental DDSCS
is expressed as

(d2σ/d�dt)
exp

q.el = (d2σ/d�dt)
exp
tot × F (1)

where the factor

F = (d2σ/d� dt)calc
q.el /(d

2σ/d� dt)calc
tot (2)

is the ratio of the model calculated incoherent quasi-elastic DDSCS and the total DDSCS,
� is the solid angle andt is the neutron time of flight.

The calculations have been carried out by means of a computer code (Novikovet al
1986). It calculates the DDSCS and its partial contributions (‘one phonon’, ‘multiphonon’,
quasi-elastic) in the solid-like approximation on the basis of a certain dynamic model of
a scatterer, taking into account effects of the sample dimensions (self-shielding, multiple
neutron scattering) and the spectrometer resolution. The computation includes an iteration
procedure which provides a desirable degree of agreement between experiment and
calculation by sequential correction of the initial model. This approach is based on the
work of Macdougall (1962).

In so doing, a frequency spectrum of the velocity autocorrelation function for liquid
potassium obtained by molecular dynamics simulation (Gonzalez Miranda 1986) has been
used to model the incoherent inelastic scattering and to evaluate a Debye–Waller factor. The
component of incoherent quasi-elastic scattering has been modelled under the assumption
that the natural line of the IQESL for a simple liquid has Lorentzian shape (Gurevich and
Tarasov 1968). Both inelastic and quasi-elastic coherent effects have been accounted for on
the basis of the viscoelastic model (Lovesey 1971) which was used for description of the
coherent neutron scattering in liquid sodium (Morkel and Gläser 1986, Morkelet al 1987)
and caesium (Bodensteineret al 1992). Two parameters of this model, the radius of the pair
correlation maximum,r0, and the Einstein frequency,ωE , are given in table 1. The value
of r0 is estimated from the maximum ofS(Q). The meaning ofωE at 340 K is evaluated
from the article by Raniet al (1989).

Table 1. The parameters of the viscoelastic model for potassium.

T (K) r0 (Å) ωE (1012 s−1)

340 3.9 8.5
440 3.9 9.4
550 3.9 9.6

Some examples of the experimental and calculated DDSCSs as well as their components
calculated in the manner mentioned are shown in figure 1. One can see that the coincidence
between the experiment and calculation takes place. It is also seen that the contribution of
inelastic and coherent components to the common intensity of the quasi-elastic peak is rather
modest. Thus, some uncertainties inevitably introduced to the modelling process of these
components are unable to change remarkably the characteristics of the IQESL (amplitude,
half-width and shape).

The experimental incoherent quasi-elastic DDSCS obtained by (1) and (2) is transformed
to the energy scale and then into the IQESL:

S
exp

q.el (Q, ω) = (d2σ/d� dω)
exp

q.el(4π/σi)k0/k (3)
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where h̄ω = E − E0 is the neutron energy transfer. Then, the values of the IQESL at
different scattering angles have been converted by the interpolation procedure to the form
at constantQ.

Figure 2. The IQESL for constant values ofQ at T = 340 K. The full curves represent the
optimal fitting of the experimental points by equation (4). The broken curves are the IQESL
natural lines. The dot–dashed curve represents the spectrometer resolution function.

Examples of the experimental IQESL for several values ofQ at 340 K are shown in
figure 2. These curves are free from multiple-scattering effects but contain the resolution
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ones.
To eliminate the resolution effects on the experimental IQESL, the iterative procedure

based upon the least-squares method algorithm has been used. It provides the optimal
description of the experimental IQESL for convolution of the model curve (Lorentzian) and
the spectrometer resolution function,R(E0, ω), measured with an appropriate vanadium
sample (see figure 2):

S
exp

q.el (Q, ω) = Snat
q.el(Q, ω) ⊗ R(E0, ω) (4)

where

Snat
q.el(Q, ω) = exp(−2W)[C(Q)1E(Q)/2]/([1E(Q)/2]2 + (h̄ω)2). (5)

Here, exp(−2W) is the Debye–Waller factor,C(Q) is the normalizing constant, and1E(Q)

is the full width at half maximum (FWHM) of the IQESL natural line. The experimental
values of1E(Q) have been taken as the initial ones.

It is seen that the coincidence between the experimental and approximating curves is
satisfactory. The good description of the natural line of the IQESL with a single Lorentzian
seems to be evidence that coherent effects do not reveal any remarkable impact on the quasi-
elastic scattering region. To confirm this assumption, the superposition of two Lorentzians
corresponding to the incoherent and coherent scattering contributions has been fitted to the
IQESL natural line:

Snat
q.el(Q, ω) = exp(−2W)

×
(

σi

σi + σc

Ci(Q)1E(Q)/2

[1E(Q)/2]2 + (h̄ω)2
+ σc

σi + σc

Cc(Q)1E(Q′)S(Q)/2

[1E(Q′)/2]2 + (h̄ω)2

)
(6)

with

Q′ = Q/[S(Q)]1/2. (7)

The ‘coherent’ Lorentzian is represented here in the form proposed by Sköld (1967). The
analysis of such a procedure shows that the addition of the second Lorentzian gives no
improvement to the description of the experiment. The FWHM of the ‘coherent’ Lorentzian
is 10–20 times greater than that of the ‘incoherent’ one, and its amplitude is less than 1–2%
of the amplitude for the ‘incoherent’ Lorentzian.

4. Results and discussion

The integral intensity of the incoherent quasi-elastic scattering can be written as (Gurevich
and Tarasov 1968)

(dσ/d�)q.el = (σi/4π) exp(−2W) (8)

with

2W = u2Q2 (9)

where(u2)1/2 is the mean-square amplitude of atomic vibrations. We have calculated the
values of (8) by the numerical integration of an area under the experimental quasi-elastic
DDSCS within the limits, assuming a loss of the area less than 2%. Represented in a
semilogarithmic scale (see figure 3), the experimental results demonstrate approximately
linear dependence onQ2, and enable us to estimate values of(u2)1/2 andσi . The former is
shown in table 2. These amplitudes appear to be in good agreement with values calculated
earlier (Zaezjevet al 1994a), using the frequency spectrum of the velocity autocorrelation
function for the melt.
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Figure 3. The integral intensity of the experimental quasi-elastic DDSCS in a semilogarithmic
scale at differentQ2 values for three temperatures.

Table 2. The mean square amplitudes of potassium atomic vibrations.

T (K) (u2)1/2 (Å)

340 0.60± 0.07
440 0.84± 0.05
550 0.89± 0.05

The estimated value ofσi is equal to 0.26± 0.02 b and agrees well with that of 0.25 b
from Sears (1984).

Figure 4. The FWHM of the IQESL natural line at different values ofQ2. The full curves
describe the experimental points in the context of the mixed diffusion model (Oskotskii 1963).
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The FWHM of the IQESL natural line as a function ofQ2 is represented in figure 4
for three temperatures. Unfortunately, the FWHM can be determined only in the range
of wavevector transfer restricted byQ 6 1.13 Å−1. The reason is a high value of the
Debye–Waller factor, considerable broadening of the quasi-elastic peaks and coherent effects
increasing with angle and temperature increase, so that the separation of the quasi-elastic
component from the total DDSCS atQ > 1 Å−1 becomes practically impossible.

Experimental data of1E(Q2, T ) have been analysed by two ways. The first one
describes these data in the context of the simplest self-diffusion models: the jump diffusion
model (Singwi and Sjolander 1960), the effective mass model (Egelstaff and Schofield
1962), and the mixed diffusion model (Oskotskii 1963). The latter presumes the self-
diffusion process is the superposition of jump and continuous mechanisms. In statistical
analysis, it has been deduced that preference should be given to the mixed diffusion model.

For this model atτ0 � τ the IQESL natural line has the Lorentzian form with the
FWHM

1E(Q2) = (2h̄/τ0)[1 + D0Q
2τ0 − exp(−2W)/[1 + (D − D0)Q

2τ0]] . (10)

Here,τ0 is the residence time of the atom,τ is the time of jumping,D0 is the coefficient of
continuous (collective) diffusion, andD is the total coefficient of self-diffusion. Considering
D as known (Gerl and Bruson 1985), we will obtainτ0(T ) andD0(T ) for three temperatures.
The values of these parameters are represented in figure 5.

Figure 5. The temperature dependence of the residence time of the atom,τ0, and the coefficient
of continuous diffusion,D0. The experimental points ofτ0 are fitted by equation (11) (Frenkel
1955).

Although the description of the experimental FWHM by equation (10) is satisfactory,
there are some reasons to apply this model for liquid potassium with precaution.

First, the residence time atT = 340 K seems to be too high:τ0 = 10−11 s,
whereas the estimation (Cocking 1968, Randolph 1968) of that for liquid sodium gives
τ0 ≈ (2–5) × 10−12 s at the melting point and just above. If we suppose the jump diffusion
is an activation process (Frenkel 1955)

τ0 = τ ′
0 exp(Ejp(T )/kBT ) (11)

whereτ ′
0 is the period of particle vibration near the temporary equilibrium centre,kB is the

Boltzmann constant, we estimate the activation energy of jumps,Ejp, as 49.2 meV from
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the data of figure 5. At the temperature of 550 K this value is near the mean energy of
atomic thermal motion ofkBT = 47.4 meV, so that the notion of activation process loses
sense.

Second, it is known that the experimental coefficients of self-diffusion in liquid alkali
metals are in agreement with the ones calculated on the basis of the hard-sphere model
(Protopapaset al 1973, Ogloblyaet al 1987). This points to the absence of the remarkable
influence of collective effects on the self-diffusion process in these substances.

So, the individual activationless mechanism of so-called ‘passive diffusion’ (Frenkel
1955) plays an important role in the atomic diffusion of liquid potassium at least for
temperatures noticeably higher than the melting point. Such diffusion takes place due to
the vacancy character of the thermal expansion of liquid alkali metals, which proceeds with
decreasing coordination number, but no considerable change of the interparticle distance
(Matsudaet al 1991).

Therefore, we choose another way to analyse the experimental data of1E(Q, T ),
namely, its comparison with the predictions of the mode-coupling theory (MCT) (see
Verkerk 1990 and references therein), which is based on the hydrodynamic approach. The
fruitfulness of the MCT for the description of self-diffusion in liquid alkali metals has
been convincingly demonstrated on the example of sodium by Montfrooyet al (1986)
and by Morkelet al (1987). The MCT predicts deviation of1E(Q2) from a straight line
corresponding to simple diffusion:1E(Q2) = 2h̄DQ2, due to effects of the mode coupling.
In reduced units we have (Morkelet al 1989)

1E/2h̄Q2 = D[1 − aQ + O(Q3/2)]. (12)

The maximum of the IQESL is

πh̄Q2Sq.el(Q, 0) = (1/D)[1 + bQ + O(Q3/2)] (13)

where

a = (D/2ω0)
1/2 b = (2D/ω0)

1/2 ω0 = 72(πρD/kBT )2(D + ν)3 (14)

ρ is the density, andν is the kinematic viscosity. The mode-coupling effects slow the
self-diffusion and the simple diffusion case is the limit of that atQ → 0, according to
equations (12) and (13).

It has been shown (Alder and Wainwright 1970, Morkelet al 1989) that equations (12)
and (13) are valid only for the limited wavevector transfer range of 06 Q 6 QL where

QL = (10Dτc)
−1/2 (15)

and τc is the atomic collision time in the liquid. The evaluation ofQL for potassium at
T = 340 K givesQL ≈ 0.6 Å−1.

Our experimental data ofSq.el(Q, 0) in reduced form (the left-hand part of equation (13))
for three temperatures are presented in figure 6. The straight lines of the right part of
equation (13) are obtained with tabular values ofρ, ν (Shpil’rain et al 1985a, b), and
D (Gerl and Bruson 1985). The shaded areas correspond to the self-diffusion coefficient
uncertainty. As seen for 440 and 550 K, our data within the experimental errors are close to
the MCT predictions in theQ range of our experiment (0.27 6 Q 6 1.13 Å−1). They are
also in agreement with the data of slow-neutron scattering on liquid sodium by Montfrooy
et al (1986) and by Morkelet al (1987) who concluded that the MCT properly describes the
IQESL for 0< Q < 1.5 Å−1. The comparison of the MCT effects in liquid alkali metals is
shown in figure 7. One can see that the deviation from Fick’s law in potassium is somewhat
more pronounced than that in sodium for equal reduced temperatures. It should be expected
that the strongest and weakest mode coupling are in caesium and lithium respectively.
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This is the result of particular combinations of thermo-physical properties of these liquids
reflected by the values ofa andb in equations (12) and (13).

Figure 6. The quantityπh̄Q2Sq.el (Q, 0) at differentQ values. Points with error bars represent
the experiment. The straight lines take the form of the right-hand part of equation (13) with
tabular values ofρ, ν (Shpil’rain et al 1985a, b), andD (Gerl and Bruson 1985). The shaded
areas correspond to the uncertainties given for the self-diffusion coefficient. The broken curve
is obtained from the mixed diffusion model (Oskotskii 1963).

Figure 7. Estimations of the coefficientb in equation (13) for liquid alkali metals as a function
of reduced temperature. The parameters ofρ, ν, andD are taken from Shpil’rainet al (1985a, b)
and Gerl and Bruson (1985) respectively.

At 340 K, the coincidence of the experiment and the MCT calculation is achieved
only at smallQ. This should be expected because the mode-coupling effects are strongly
diminished due to small values ofa andb (equations (12)–(14)) (Bosseet al 1979, Morkel
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et al 1987) for the temperature in the vicinity of the melting point (the lowest temperature of
the given experiment corresponds toT/Tm = 1.01). At the same time, the mixed diffusion
model (see the broken curve in figure 6) fits the experimental data rather satisfactory at this
temperature. It can be supposed that the solid-like features in melt self-diffusion near the
melting point are responsible for the deviation of the1E(Q2) function from the straight
line corresponding to the simple diffusion.

5. Conclusion

One can conclude that the self-diffusion in liquid potassium at temperatures of 340–550 K
is of a complex character. It has an individual and activationless mechanism and can be
approximately described by the mode-coupling theory for temperatures relatively far from
the melting point. Being applied to reliable experimental data, such a model analysis enables
us to determine simultaneously a self-diffusion coefficient and a kinematic viscosity, as was
done for liquid sodium by Morkel and Gronemeyer (1988). The solid-like features of the
self-diffusion in liquid potassium appear near the melting point, that explains the character
of the 1E(Q2) function for 340 K.
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